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INTRODUCTION

The spectroscopy of zero-phonon lines has probably been the most important source of

information about the symmetry and nature of aggregate colour centres in solids.l The

usefulness of these lines as probes of defect centres depends on their having a linewidth

* narrow enough to resolve shifts and splittings due to external perturbations such as magnetic

and electric fields and uniaxial stress. At liquid helium temperatures, the widths of zero

phonon lines are substantially less than at higher temperatures, but they are still

inhomogeneously broadened by lattice strains, and a residual width (rinh) of 1-50 cm 1

remains. This can prevent the observation of resolved splittings and necessitate the use of

modulation techniques 2 and moment analysis 3 to extract any useful information.

As will be discussed here, the use of narrow band laser excitation makes it possible to

eliminate the effects of this inhomogeneous broadening and realize a resolution limited only

by the homogeneous linewidth (rh) which is typically 10-100 MHz. This increase in

resolution by a factor of 103-104 over conventional spectroscopy impacts at least two areas.

The first is high resolution studies of the effect of external perturbations and hence the

physical and electronic structure of the centres; and the second is a determination of the

mechanisms responsible for homogeneous broadening or equivalently the optical dephasing

time T2 =(irIh).-'l Contributions to T2 come from population decay (TI) as well as from

pure dephasing (T*) due to random modulation of the optical transition frequency by

phonons, nuclear spins, etc., i.e., (T2)- - (2TI)- + (T) - . Considerable work is being

done in this field to study rare earth impurity systems in crystals 4 and glasses. 5 Here we

concentrate on the results that have been obtained from the application of these techniques

to colour centre systems which exhibit zero phonon lines. The techniques are basically of
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two kinds-frequency domain methods such as holeburning and time domain observations of

optical coherent transients.

HOLEBURNING

Holeburning is the reduction of absorption following selective narrow band laser

_L, excitation within the inhomogeneous line, (see Figure 1). Holeburning due to two-level

0 saturation was observed for the R lines in ruby. 6 Such holes recover in the absence of

exciting light with the excited state lifetime. Longer lived holes were observed for organic

molecules in crystals7 due to selective photochemistry and in glasses8 due to rearrangement

of molecular environments. Soon after this, optical pumping of the nuclear hyperfine levels

of rare earth ions in crystals was shown to lead to holeburning 9 with the hole lifetime being

determined by nuclear spin-lattice relaxation times, which varied from -secs t 0 to -1 hr.1

The first observation of holeburning in a colour centre material was reported by Macfarlane

and Shelby 12 for the F" centre in NaF, and since then experiments have been carried out in

a number of other colour centre systems (see Table I), suggesting that the phenomenon of

holeburning in colour centres may be quite general. In addition, there are possible

applications to information storage. 13

Two cases have been investigated in some detail, i.e., F" in NaF 12 and the 6070A zero

phonon line in NaF. 14 ,15

IC

a) Fin NaF

This centre is a singly ionized aggregate of three F centres in a (111) plane having C3v ,

symmetry. The emission spectrum (IE. 1A,) exhibits a zero phonon line at 5456A 16 and

approximately mirrors the absorption (see Figure 2). The zero phonon line has -103 of the

intensity of the total transition and an inhomogeneous width at 2K of 1.1 cm" (32 GHz).
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Holeburning was observed by irradiating the zero phonon line for -2 sec with 200 mW/cm 2

of single frequency dye laser light with a jitter width (r,) of -2 MHz. The resulting holes

were detected by scanning the laser at reduced intensity and measuring the excitation

M. spectrum of IE--IA1 emission in the peak of the phonon side band at 5800A (see Figure 2).

The hole width, H, was 38 MHz and since the hole depth was <10% the homogeneous

width was obtained from H = 2(rh + r,) i.e., rh=17 MHz or T2 =20 nsec. The

fluorescence decay time, T1, of this centre is 10 nsec. The homogeneous linewidth is thus

T1 -limited, a situation that is expected to be common for strongly allowed transitions.

The hole recovery showed two components, one of several seconds due to a triplet state

bottleneck, and a much longer component of 70 minutes (see Figure 3). The long-lived

holeburning could be reversed by irradiation with near UV light, with an action spectrum

which followed approximately the F band absorption which peaks at 335 am. This suggests

that an electron is lost from the centre to a trap during holeburning and can be replaced by

electrons liberated by the UJV light. The maximum hole depth which could be obtained was

-30%, indicating that not all F" centres were sufficiently near appropriate electron traps.

The observation of long-lived narrow holes suggested that an enormous increase in

resolution could be achieved in Stark spectroscopy since a d.c. electric field could be applied

and the holes scanned during their long lifetime. The electric field removes the electronic

degeneracy of the IE state with a Stark splitting coefficient A, as well as the orientational

degeneracy (due to the cubic crystal symmetry) with a pseudo-Stark coefficient B. For "C

electric fields (E.) parallel to (100) a distribution of splittings was found peaking at

I A-BI - 0.19 MHz/Vcm - 1 for laser polarization EL parallel to ES and

I A + B I - 0.43 MHz/Vcm - for EL . ES (see Figure 4). The distribution of intensities

results from the distribution of magnitudes and orientations of local strain fields with respect
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to the applied electric field. This provides clear evidence that there exists a distribution of

zero-field splittings of the E level inside the inhomogeneous line. The splittings will be on

the order of the inhomogeneous line-width, since the coefficients for stress-induced removal

of the electronic degeneracy are comparable to those for removal of orientational degeneracy.

¢,N' Since the strain fields strongly influence only the Stark splitting, the latter can be
0

Car distinguished from the pseudo-Stark term by an analysis of the intensity distribution of

Figures 4(b) and 4(c). Such an analysis shows that for (100) fields, the Stark-splitting term

(A=0.31 MHz/Vcm "1) is larger than the pseudo-Stark term (B=0.12 MHz/Vcm=1 ). The

latter represents twice the difference between ground and excited state shifts which is the

difference of the projections along (100) of the ground and excited state (111) expectation

dipole moments. The magnitude of this difference, I de -dg I, is

(v/'/2) B = 0.10 MHz/Vcm-1, expressed in energy splitting units. The true Stark effect

measured the dipole moment perpendicular to the 3-fold axis i.e.,

de. - (v3/2vJ2) A - 0.19 MHz/Vcm - 1.

The Zeeman effect was also investigated by burning a hole and then applying magnetic

fields up to 50 kG. From magnetic-circular-dichroism measurements, Davis and Fitchen 17

obtained a g-value of 0.04±0.02 for this transition. Thus a linear splitting of up to 2.8 GHz

was expected. However, the magnetic field had no observable effect on the hole. This

provided further evidence that sizeable zero-field splittings due to random internal strains are
'.

present and quench the linear Zeeman effect. An analysis of the Zeeman effect in the

presence of a distribution of zero-field splittings shows that the magnetic interaction between

the split components of 1E is certainly less than 0 .05MB. This is consistent with the

magnetic-circular-dichroism results, 17 which cannot detect the presence of zero-field

splittings.
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of m and I quoted above. An example of a set of experimental data is shown in Figure 6

for E, 1I (111). In this centre, the ground and excited states are nondegenerate (A' -. A")

so the electric field splittings are pseudo-Stark splittings i.e., arise from the removal of

orientational degeneracy only. The holes, therefore, do not broaden significantly in the

applied field. The three sets of splittings in Figure 6 are in the ratio I 2m- II :1:(2m + 8)

from which I/m=- 1.446 is obtained, with the magnitude of the dipole being

1.57 MHz/Vcm "1.

c) Other Centres

In addition to the two cases discussed above, holeburning has been found in a number

of other centres (see Table I). So far, studies have concentrated on spectral regions easily

accessible to cw dye lasers and a large fraction of the centres studied exhibit holeburning. In

most cases, those which fail to "burn" do not fluoresce i.e., they are quenched by fast

nonradiative relaxation and have a broad homogeneous linewidth.

COHERENT TRANSIENTS

Photon echo or optical free decay techniques are ideally suited to measuring

homogeneous linewidths because the measurements are made on the time scale of the

dephasing itself. They are therefore less sensitive to the effects of slowly changing

environments or slow spectral diffusion which can lead to line broadening in frequency

domain techniques such as holeburning. Two factors are probably responsible for the lack of c

work in this area on colour centre materials. One is the expectation that in most cases at the

lowest temperatures the dephasing time will be limited by the fluorescence lifetime which can

be more easily measured in other ways, and the second is the widespread occurrence of long

lived holeburning which leads to substantial bleaching of the zero phonon line at the high

intensities used in coherent transient measurements.
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A measurement of optical free induction decay in the F" centre of NaF 20 using laser

frequency switching by an intracavity phase modulator 21 gave a dephasing time of

T2 =16±4 nsecs. This is consistent with the holeburning (rh = 17 MHz) and fluorescence

lifetime measurements (T 1=10±2 nsec) and confirms that optical dephasing is due to

population decay. For these fast dephasing times the technique of optical phase switching 22

is more easily applied. Here a coherent superposition of ground and excited states is

produced in steady state and then the phase of the laser is switched by applying a voltage

step to a phase modulator outside the laser cavity. The coherent sample polarization radiates

in the forward direction and the laser acts as a local oscillator for homodyne detection.

Maximum signal strength occurs for a phase switch of ir radians. It has been shown 22 that

the signal decay is simply related to Ti and T2 in the low power regime i.e., x2 TT 2 << I

where X is the optical Rabi frequency. In particular, the phase switch signal decays

exponentially with a rate 2/T 2 . Phase switched decays were observed on the 6070A line in

NaF giving T2 =10±2 nsecs in agreement with the holeburning result (see Figure 7a).

Measurements were also made on the 5754A centre and the decays here were too fast to be

resolved by our detection system i.e., T2 :<2 nsecs (Fig. 7b). In these experiments, the laser

was gated on for 200 psec during the phase switching and the repetition rate of the

experiment was 50 Hz. This reduced the effects of long lived holeburning.

CONCLUSION

The examples discussed in this paper serve to illustrate the usefulness of holeburning

for very high resolution spectroscopic studies of colour centres, as well as for obtaining a C

measure of the homogeneous linewidths i.e., optical dephasing times. It is expected that the

technique will become a rather generally useful tool for such studies. Coherent transient

techniques have not yet been applied in many cases but examples of optical phase switched
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decays and optical free induction decay show promise of future applications. Photon echo

measurements using picosecond pulses have not yet been made but should prove particularly

useful for the determination of dephasing times.

N This work was supported in part by the Office of Naval Research.
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Table 1. Colour Centres Exhibiting Long Lived Holeburning

Assignment

or
C14

0Material XAtriflh(GHz) Symmetry Ref.

NaF 5455.50 32 F+, C3 v a,b

5769.30 40 -c,d

5753.65 34 c

6069.65 36 CS ejf

LiP 8330 130 R', C3v g

CaF2  6774 130 F3, D2d C

Diamond 6378 900 vac-N pair, C3 v, c

-tWavelength (in air) of the zero phonon line.

a. R. M. Macfarlane and R. M. Shelby, Phys. Rev. Lett. 42, 788 (1979).

b. R. M. Mfacfarlane, A. Z. Genack, and R. G. Brewer, Phys. Rev. B17. 2821 (1978).

c. This work.

d. W. Lenth and G. C. Bjorklund, unpublished.

e. M. D. Levenson, R. M. Macfarlane, and R. M. Shelby, Phys. Rev. B22, 4915 (1980).

f. R. T. Harley and R. M. Macfarlane, to be published.

g. W. Moerner, F. M. Schellenberg, and G. C. Bjorklund, App. Phys. B28, 263 (1982).
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FIGURE CAPTIONS

Figure 1. Schematic illustration of an inhomogeneously broadened line with a hole bleached

at the frequency of a narrow band laser. For shallow holes, the hole width is twice the0'

homogeneous linewidth.

Figure 2. (a) Schematic energy-level diagram for the IA 1- JE transition of F" in NaF;

(b) the emission of the zero-phonon line and the vibronic sideband; (c) the excitation

spectrum; (d) a hole burnt in the zero-phonon line.

Figure 3. Hole recovery time for the 5456A line of F+ in NaF. (a) The slow component

and (b) the fast triplet population component.

Figure 4. Stark effect in F-" (a) Hole burned in zero field. (b),(c) Applied field

Esf=2.7kV/cm. 11 (100). EL denotes the direction of the laser polarization. A is the

pseudo-Stark coefficient and B the Stark coefficient.

Figure 5. Stark splitting patterns for the Cs centre at 6070A in NaF E. denotes the Stark
'C

field and EL the laser polarization used for burning and probing. The direction of the

permanent dipole is (m,mf). On the left side of the figure theoretical intensities are given,

and on the right experimental intensities are shown in parenthesis. Note that the

experimental values have been normalized to one theoretical value for each of the 7

experimental geometries.

" i,-
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Figure 6. Stark effect on the 6070A centre in NaF using holeburning spectroscopy. The

case E. 11 (111) is shown here (a) ELI11 (111), (b) EL 1 (110). (c) Stark splittings as a

function of applied electric field.

Figure 7. Measurement of optical dephasing by phase switching. (a) 6070A centre in NaF,

mi (b) 5754A centre in NaF. In case (b), the decay time is limited by the detector respouse

and is <2 nsec.

-a
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